An Efficient Optimization based Vehicle Movement Prediction with Aid of Feed Forward Back Propagation Neural Network

نویسندگان

  • E. Baby Anitha
  • K. Duraiswamy
  • Ivana Nizetic
  • Kresimir Fertalj
چکیده

Moving vehicle location prediction method mainly based on their spatial and temporal data . The moving objects has been developed as a specific research area of Geographic Information Systems (GIS). Most of the techniques have been used for performing the vehicle movement detection and prediction process. This type of work is a lack of analysis in predicting the moving vehicles location in current as well as in the future. Existing methods are using a Genetic Algorithm (GA) and Particle Swarm Optimization algorithm (PSO) for finding optimal paths in moving objects. Within the previous technique, there's no guarantee for fulfillment to finding a vehicle optimal path and also still now wants to improvement for choosing optimal path. To beat the disadvantage in the existing method, during this paper, to propose moving vehicle location prediction algorithm is an Artificial Bee Colony algorithm (ABC) and Feed Forward Back Propagation Neural Network (FFBNN). During this proposed algorithm is used for compute vehicle optimal path and selected optimal paths are given to the FFBNN to accomplish the training process. The trained FFBNN is then used to find the vehicle moving from the current location. By combining ABC algorithm and FFBNN, the moving vehicle's location is predicted more efficiently. The outcomes of the FFBNN-ABC algorithm are compared with results of previous method, such as FFBNN-GA, FFBNN-PSO. The evaluation result shows that the proposed technique more accurate than other algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ANN Based Modeling for Prediction of Evaporation in Reservoirs (RESEARCH NOTE)

This paper is an attempt to assess the potential and usefulness of ANN based modeling for evaporation prediction from a reservoir, where in classical and empirical equations failed to predict the evaporation accurately. The meteorological data set of daily pan evaporation, temperature, solar radiation, relative humidity, wind speed is used in this study. The performance of feed forward back pro...

متن کامل

Signal Prediction by Layered Feed - Forward Neural Network (RESEARCH NOTE).

In this paper a nonparametric neural network (NN) technique for prediction of future values of a signal based on its past history is presented. This approach bypasses modeling, identification, and parameter estimation phases that are required by conventional parametric techniques. A multi-layer feed forward NN is employed. It develops an internal model of the signal through a training operation...

متن کامل

Comparison of artificial neural network and multivariate regression methods in prediction of soil cation exchange capacity (Case study: Ziaran region)

Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data...

متن کامل

Application of Linear Regression and Artificial NeuralNetwork for Broiler Chicken Growth Performance Prediction

This study was conducted to investigate the prediction of growth performance using linear regression and artificial neural network (ANN) in broiler chicken. Artificial neural networks (ANNs) are powerful tools for modeling systems in a wide range of applications. The ANN model with a back propagation algorithm successfully learned the relationship between the inputs of metabolizable energy (kca...

متن کامل

Prediction of the Liquid Vapor Pressure Using the Artificial Neural Network-Group Contribution Method

In this paper, vapor pressure for pure compounds is estimated using the Artificial Neural Networks and a simple Group Contribution Method (ANN–GCM). For model comprehensiveness, materials were chosen from various families. Most of materials are from 12 families. Vapor pressure data of 100 compounds is used to train, validate and test the ANN-GCM model. Va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014